Matematika

Pertanyaan

Buktikan rumus-rumus trigonometri ini!

sin α sin β = 1/2 [cos (α - β) - cos (α + β)]
sin α cos β = 1/2 [sin (α - β) + sin (α + β)]
cos α cos β = 1/2 [cos (α - β) + cos (α + β)]
cos α sin β = -1/2 [sin (α - β) - sin (α + β)]

2 Jawaban

  • 1) Add vertically the first and second equations to get:
    2 sin A cos B = sin (A + B) + sin (A - B)
    Divide by 2 in both sides,
    sin A cos B = 1/2[sin (A + B) + sin (A - B)]

    2) If we loop out the way in first solution, in other words, we substract it, hence we get
    2 cos A sin B = sin (A + B) - sin (A - B)
    Divide by 2 in both sides,
    cos A sin B = 1/2 [sin (A + B) - sin (A - B)]

    3) Add vertically the third and fourth equations,
    2 cos A cos B = cos (A + B) + cos (A - B)
    cos A cos B = 1/2[cos (A+B) + cos (A-B)]

    4) Substract vertically the third and fourth equations,
    -2 sin A sin B = cos (A + B) - cos (A - B)
    sin A sin B = -1/2 [cos (A+B) - cos (A-B)]

    Hence all the cases simply proved by using sum and difference formulas
    Gambar lampiran jawaban ShanedizzySukardi
  • Jawaban ada di lampiran
    Gambar lampiran jawaban 18Navillera

Pertanyaan Lainnya