Matematika

Pertanyaan

Nilai x yang memenuhi persamaan :
[tex](3^{2x} - 5) . (3^{x} - 36) = 0
[/tex]
adalah ......................

2 Jawaban

  • misal [tex]u=3^{x}[/tex]

    [tex](u^{2}-5)(u-36)=0[/tex]
    [tex](u+\sqrt{5})(u-\sqrt{5})(u-36)=0[/tex]

    [tex]u_{1}=-\sqrt{5}[/tex]
    [tex]3^{x_{1}}=-\sqrt{5}[/tex], tidak ada solusi

    [tex]u_{2}=\sqrt{5}[/tex]
    [tex]3^{x_{2}}=\sqrt{5}[/tex]
    [tex]x_{2}=3log(\sqrt{5})[/tex]
    [tex]x_{2}=\frac{1}{2}*3log5[/tex]

    [tex]u_{3}=36[/tex]
    [tex]3^(x_{3}}=36[/tex]
    [tex]x_{3}=3log(36)=3log(9)+3log(4)=2 + 3log(4)[/tex]
  • EksPonenSiaL

    (3^(2x) - 5)(3^x - 36) = 0

    3^(2x) - 5 = 0
    3^(2x) = 5
    (9)^x = 5
    x = 9'log 5 = 0,732


    3^x - 36 = 0
    3^x = 36
    x = 3'log 36 = 3,262

Pertanyaan Lainnya