Matematika

Pertanyaan

1.) buktikan bahwa barisan/deret berikut: 1² + 2² + 3² + 4² + ... + n² = n (n+1)(2n+1)/6
bernilai untuk semua n bilangan asli.

2.) buktikan bahwa deret/barisan berikut: 1.2 + 2.3 + 3.4 + 4.5 + ... + n (n+1) = n(n+1)(n+2)/3
bernilai untuk semua n bilangan asli.


tolong bantu saya dengan cara nya ya kak.. terimakasih...

1 Jawaban

  • Induksi Mat
    1)
    1²+2²+3²+...+n² = n(n+1)(2n+1)/6
    n = 1 (benar)
    n= k --> 1²+..+k² = k(k+1)(2k+1)/6
    n= k+1 --> k² + (k+1)² = (k+1)(k+1+1)(2(k+1)+1) / 6
    k(k+1)(2k+1)/6 +(k+1)² = (k+1)(k+2)(2k+2+1)/6
    1/6 {k(k+1)(2k+1) + 6(k+1)²} = 1/6 (k+1)(k+2)(2k+3)
    1/6 {(k+1){ k(2k+1) + 6(k+1)} = 1/6(k+1)(k+2)(2k+3)
    1/6 {(k+1) { 2k²+k + 6k + 6}} = 1/6(k+1)(k+2)(2k+3)
    1/6 {(k+1) (2k² + 7k + 6)} = 1/6 k+1)(k+2)(2k+3)
    1/6 {(k+1)(k+2)(2k +3)} = 1/6  (k+1)(k+2)(2k+3)
    TerBuktI
    ..
    2)
    1,2 + 2.3 + 3.4 + ..+n(n+1) = 1/3 (n(n+1)(n+2))
    n = 1 (benar)
    n= k --> 1.2 + 2.3 +..+ k (k+1) = 1/3  k(k+1)(k+2)
    n= k+1
    1/3 k(k+1)(k+2) + (k+1)(k+1+1) = 1/3 (k+1)(k+1+1)(k+1+2)
    1/3 k(k+1)(k+2) + (k+1)(k+2)  = 1/3 (k+1)(k+2)(k+3)
    1/3 {k(k+1)(k+2) + 3(k+1)(k+2)} = 1/3 (k+1)(k+2)(k+3)
    1/3 (k+1)(k+2)(k + 3) = 1/3 (k+1)(k+2)(k+3)
    terbukTi


Pertanyaan Lainnya